Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Fang Li, Ya-Qing Feng,* Bo Gao and Nan Li

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
|xf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.108$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3,10-Bis(2,6-dichlorophenyl)-4,11-diphenyl-1,8-dioxa-2,9-diazadispiro[4.1.4.2]trideca-2,9-dien-6-one

The title compound, $\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$, was synthesized by the intermolecular [3+2]-cycloaddition of 2,6-dichlorobenzonitrile oxide and 2,5 -bis(benzylidene)cyclopentanone. Three fivemembered rings are linked by two spiro-C atoms. The cyclopentane ring has a twist conformation and the two isoxazoline rings are envelopes. The crystal packing of the title compound is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Spiro-compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro-compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported.

(I)

The title compound was synthesized by the intermolecular [3+2]-cycloaddition of 2,6-dichlorobenzonitrile oxide and 2,5bis(benzylidene)cyclopentanone. The molecular structure of (I) is illustrated in Fig. 1. There are two spiro junctions in the molecule, which contains two isoxazoline rings and a cyclopentane ring. The two isoxazoline rings adopt envelope conformations. The cyclopentane ring has a twist conformation. The structure of 4,11-bis-4-chlorophenyl)-3,10-bis(2,6-dichlorophenyl)-1,8-dioxa-2,9-diazadispiro[4.1.4.2]trideca-2,9-dien-6-one-methanol-chloform (1/0.75/1) has been reported

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids.

Received 16 September 2003
Accepted 22 September 2003
Online 7 October 2003

Figure 2
The crystal structure of (I), viewed along the b axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions.
previously (Li et al., 2003). The crystal packing of the title compound is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Fig. 2).

Experimental

A mixture of 2,6-dichlorobenzonitrile oxide (3 mmol) and 2,5-bis(benzylidene)cyclopentanone (1.5 mmol) in dry benzene (30 ml) was heated under reflux for 40 h . After evaporation of the solvent, the residue was separated by column chromatography (silica gel, petroleum ether-ethyl acetate $=5: 1$) to give the title compound, (I). M.p. 527-529 K; IR (KBr): $1763(\mathrm{C}=\mathrm{O}), 1595,1579(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 1.75-1.85 (2H, m), 1.91-2.04 ($2 \mathrm{H}, m$), 5.65 $(2 \mathrm{H}, s), 7.14-7.30(16 \mathrm{H}, m) ; 20 \mathrm{mg}$ of (I) was dissolved in 15 ml chloroform and methanol mixed solvent, and the solution was kept at room temperature for 10 d , yielding colorless single crystals of (I) by evaporation.

Crystal data
$\mathrm{C}_{33} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=636.33$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=14.464$ (3) А
$b=13.377$ (3) \AA
$c=17.080$ (4) \AA
$\beta=114.954$ (4) ${ }^{\circ}$
$V=2996.2(13) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.799, T_{\text {max }}=0.917$
24667 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.108$
$S=1.01$
6135 reflections
379 parameters
$D_{x}=1.411 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 950
\quad reflections
$\theta=2.9-25.1^{\circ}$
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$
$D_{x}=1.411 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 950
reflections
$\theta=2.9-25.1^{\circ}$
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$

6135 independent reflections
3963 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-18 \rightarrow 18$
$k=-16 \rightarrow 16$
$l=-21 \rightarrow 21$

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and refined in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS-97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D. M., Kunze, H. B. \& Faulkner, D. J. (1991). J. Nat. Prod. 54, 11371140.

Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. \& Mikami Y. (1991). Tetrahedron, 47, 6617-6622.
Li, X.-F., Feng, Y.-Q. \& Hu, X.-F. (2003). Acta Cryst. E59, o670-o671.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

